Int. J. Solids Structures, 1972, Vol. 8, pp. 111 to 129. Pergamon Press. Printed in Great Britain

TRANSIENT RESPONSE OF SUBMERGED
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Abstract—The transient response of an elastic prolate spheroidal shell to a uniform pressure suddenly applied
to its surface, and the pressure field in the surrounding acoustic fluid are obtained. By appropriate transforma-
tions of response functions and a geometric variable the problem is reduced to the simultaneous numerical
integration, in a finite domain, of partial differential equations on functions which are regular in the space variables.
An approximate relation is established to represent the fluid field, which, together with the plane wave approxima-
tion, is then used to obtain approximate solutions for the shell response. Extensive numerical resuits are presented
for steel shells in sea water.

1. INTRODUCTION

THE extensional, steady-state response of submerged prolate spheroidal shells, and the
accompanying sound field have been studied by Yen and DiMaggio [1].

By assuming that the fluid satisfies a plane wave equation (or making an equivalent
assumption), Carrier [2], Mindlin and Bleich [3] and others obtained the transient response
of submerged cylindrical shells for short times after the initiation of loading. Haywood [4]
improved this approximation for cylindrical shells by using a fluid potential satisfying
the cylindrical wave equation. The validity of these procedures has been discussed by
Klosner [5].

In this paper, the extensional displacements of submerged prolate spheroidal shells
and the pressure in the surrounding fluid, due to a uniform pressure of constant magnitude
suddenly applied to the shell surface, are obtained by using suitable numerical techniques.
First the tangential displacement is transformed such that the two regular singular pointsare
eliminated from the differential equations governing the shell response. Then a transforma-
tion of the radial coordinate reduces the infinite physical domain into a (finite) rectangular
mathematical one within which, and on the boundaries of which, all functions of interest
are regular in the space variables. A numerical integration scheme appropriate to the
resulting system of partial differential equations is then employed to obtain numerical
results for a steel shell, with a major to minor axis ratio of six, submerged in sea water.

A spheroidal wave approximation is developed analogous to Haywood’s cylindrical
wave approximation [4]. It is shown that this approximation (and all the others mentioned)
are valid either for the far field or short times. When the spheroidal wave approximation
is combined with the plane wave approximation, the equations governing fluid and shell
are uncoupled (as they are when the plane wave approximation is used alone). Numerical
results for the shell displacements are obtained using each of these approximations and
compared with those obtained using the more exact theory.
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2. FORMULATION OF THE PROBLEM

Using Flammer’s [6] notation, the prolate spheroidal coordinate system and geometry
of the shell are shown in Figs. 1 and 2. The shell is assumed to be bounded by confocal
spheroids defined by ¢ = a+h/d, where d is the interfocal distance, h is the minimum
thickness and ¢ = a (eccentricity is 1/a) defines the middle surface. The displacements
win, t) and u(n, t), respectively, perpendicular and tangent to the middle surface, are termed
radial and tangential. Consistent with the thin shell theory that follows, an applied radial
load f(n, t) acts in the positive ¢ direction at £ = a and an acoustic fluid occupies the space
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The extensional shell displacements satisfy the following equations:

Lou+ L, w+(l/2c)*Mii = 0, ()
1\ P la?—1
Lyu+L,,w+ (Z) Mw = 4yh( ) M(f~p,), (2)

where dots denote differentiation with respect to time, and L,,, etc., are differential
operators;

= —(1=n?¥d*/dn*)(1 =n*P = (1), 3)
td a(a* 1) 1—n*\ ¥ (1 —v)an
b = _(573) dn[awr a*—n’ ]_ a@—1f a*—n*’ @
a(a®—1) -3\t [1—p*\2 (1 —vay
— 5
Lo = [ v a*—n? ]dn(az—-l a—1] a*—n*’ ©)
and
a? 2va®  a*@®-1)
LWW—a2_1+a2_n2+(a2_n2)2' (6)
In these equations,
M = (1 —v)[(@*—n?)/a’]; D
[ is the major axis of the shell middle surface (see Fig. 2);
= (/p,*, ®)

where p is the shear modulus, v is Poisson’s ratio and p, is the mass density of the shell
material ; and p,(n, t) is the fluid pressure on the shell surface, i.e.

P, By = pl&,n, )]e=,- 9)

The shell equations of motion, (1) and (2), may be derived through the application of
Hamilton’s principle, which also furnishes the natural boundary conditions:

w1 =0, (10a)
w(+1, 1) is bounded. (10b)

The fluid velocity potential ®(&, n, t) satisfies the wave equation
V20 = (1/c2)d, (11)

where ¢ is the velocity of sound propagation in the fluid and the axisymmetric Laplacian
in prolate spheroidal coordinates is

2_221 0 2___2 _l
V_<)52 [( I3+ 3z )55} (12)

The radial velocity of the shell must be equal to that of the fluid on its surface. Therefore,

W = —(6®/0n)); -, (13)
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where the right-hand side is the normal directional derivative of the fluid velocity potential
P.

Since
dn = hd¢, (14
where the stretch ratio h, in prolate spheroidal coordinates is
he = 3d[(E* =& -1, (15)
equation {13) may be rewritten as
W= —(1/h)(0D/0)]s= 0 (16)

At some time (t = 0}, a uniform radial pressure is suddenly applied on the shell surface.
Then, in equation (2)

f(?], t) = '_POH(I)a (]7)

where H(t) is the Heaviside step function.
The fluid velocity potential and the fluid pressure are related through:

p = pb. (18)

The shell and the acoustic fluid are assumed to be initially at rest, and the fluid pressure
nil; thus, using equation (18):

u(n, 0) = w(n, 0) = 4(n, 0) = w(n, 0) = 0, (19)
&, 7,0 = 0. (20)
Since the fluid potential need be determined only to an arbitrary constant, set
O, 7.0) = 0. 21
To represent an outgoing wave, it must be required that [7]:
fim [(0D/0r)+(1/c)D] = O(1/r), (22)
where r is the radial distance from the shell center. Since
= fim 4. @

as may be readily seen from Fig. 1, equation (22) may be written as:

g}j{; [(2/d)(0®/08) +(1/c)b] = 0(1/¢) (24)

It is now required to determine functions uy, t), win, t} and ®(&, 1. t) such that equations
(1), (2), (10}, (1 1), (16), (19~(21) and (24) are satisfied.

3. REMOVAL OF SINGULARITIES AND TRANSFORMATION OF DOMAIN
Solutions of equation (11) that satisfy equation (24) have the form

d&) |
& n.0) = D(n, t=5 ;)/ & (25)
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where D[y, t —(d/2)(¢/c)] is regular in & and # in the region & > a, —1 < n < +1. This can
be written as

(D(ia n, t) = (]_’12)_16(6’ n, t)7 (26)
where

G 1) = (1—n2)[D(n, -~ -E) /6] @7)

isregularin £ and g in the region & > a, —1 < p < +1.
Assuming that f(n, t) is regular in g, it follows from equations (1), (2), (16) and (18)
that w(n, ) is regular in n and that

uln, t) = (1—1*)"*S(n, 1), (28)
where S(, t) is regular in # and, using equation (10a),
S(+x14,n =0 (29)
Letting
win, 1) = (1=n*)""Z(n, 1), (30)
where Z(n, t) is regular in n and using equation (10b),
Z(+1,1)=0. (31)

To map the infinite physical domain ¢ > a, —1 < 5 < +1, onto the finite mathe-
maticaldomain 0 < y <1, -1 <y < +1, let

y = 1/(ed), (32)
e=1/a (33)

where

is the eccentricity of the shell middle surface. Then, instead of equation (26) the form of the
fluid velocity potential becomes

(1=n*)"'Fly.n, 1), (34)

where, from equation (27), F is regular in y and # and satisfies
F(0,n,t) =0, (35)
Fy, £, =0. (36)

If equations (28), (30) and (34) are substituted into equations (1), (2), (11), (16), (19), (21)
and (20), these equations become, respectively,

f1(d*S/dn?) + 1,8 + f(dZ/dn) + fuZ + fsS = 0, (37)

g(dS/dn)+g,S +g:Z+g.Z = gSF]y=1+g6’ (38)

h,F = h,(82F/0y*)+ h3(0*F/on?) + ha(OF/0y) + hs(0F /on) + heF, (39)
2\ {a*—1\?0F )

e e @

S(n,0) = Z(,0) = $(n,0) = Z(,0) = 0, (41)
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and
F(y,n,0) =0, (43)

where the functions f,—f5, g,~g¢ and h,~h,, of  or 4 and y are written out in Appendix A.
The problem of solving equations {1}, {2}, (10}, {11}, (16}, (191H21) and (24) for the

functions ®(&, 5, t) and w(n, t) which are regular in ¢ and #, and u(n, t), which has regular

singular points at # = +1, in the infinite physical domain £ > a, —1 < 5 < +1, has been

transformed into the problem of solving equations {37}-{43), (29), (31), (35) and (36) on the

functions F{y,n, 1), Z(n,t) and S(n, t), which are regular in y and #, in the finite mathe-

matical domain 0 £ y < [, —1 < 5 < +1, thus making numerical integration possible.
The transformation of the problem is illustrated in Figs. 3(a) and (b).
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FI1G. 3. (a) Physical domain and governing equations. (b) Transformed domain and governing equations.

For foads f symmetric in ¢, the displacement w is symmetric in # while the displacement
u and the n — component of the fluid velocity are antisymmetric in 5. Therefore,

win, t) = wl—n, 1), (44)
ulm, t) = —u(—n,1), (43)

and
(1/h)0D/on)] s, = —(1/h,)(0®/on)]-,, (46)
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where the stretch ratio h, in prolate spheroidal coordinates is

hy = 3 = n?)/1 =), (47)
or, as may be seen from equations (30), (28) and (34),
Z(n,1) = Z(—n,1), (48)
S, 1) = =S(=n,1), (49)
and
F(y,n,0) = F(y, —=n,1) (50a)
(OF/0m]+, = —(OF/on)]-,. (50b)
Similarly, for antisymmetric applied loads,
Z(n,1) = —Z(=n,1), (51)
S(n, 1) = S(—n.1), (52)
and
F(y,n,0) = —F(y, —n,1) (53a)
(OF/on)]+, = (OF/on)]—,. (53b)

By making use of equations (48)-(50), (51)53), as appropriate, only half the domain of
Fig. 3(b),1.e. 0 < n < +1, need be considered.

4. NUMERICAL INTEGRATION

To solve this mixed initial boundary value problem, the square region 0 <# < 1,
0 < y <1 of Fig. 3(b) is subdivided into a grid with N subdivisions in both the # and y
coordinates with spacing

5 =1/N. (54)

In equations (38) and (40) the space derivatives are replaced by difference expressions with
errors of order 62, and difference expressions with errors of the order of the square of the
time step are used for the time derivatives. This transforms the differential equations (38)
and (40) into recurrence equations of the explicit type involving the values of the unknown
functions at time ¢; and at two preceding time steps, t;_; and t;_,, at the pivotal points
(Yns10)- - - (x> v - 1) shown in Fig. 4. To obtain a stable finite difference scheme to approx-
imate equation (37), von Neumann’s finite difference method [8] is used. The resulting
difference equations are of the implicit type and their solution requires the inversion of a
linear system of N — 1 algebraic equations in the same number of unknowns at each time
step. The matrix of the coefficients of the unknown pivotal values Sy(t;),j = 1...(N—1),
has a tri-diagonal form, making application of the classical Gaussian algorithm of elimina-
tion—back substitution quite efficient. Finally, use of the alternating-direction method [9]
on the differential equation (39) governing the fluid response transforms it into recurrence
equations of the implicit type involving the unknown pivotal values at time ¢, and at two
preceding time steps at the pivotal points shown in Fig. 4. The matrix of the coefficients of
the resulting algebraic equations has a tri-diagonal form and the Gaussian algorithm is
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Fi1G. 4. Grid system used for numerical integration.

again appropriate. For a given shell and applied pressure, a typical solution for the shell
displacements and fluid pressure field took approximately 1.7min for N = 10 on an
IBM-360/91 computer.

5. APPROXIMATE SOLUTIONS

Approximate expressions for the elastic wave equation, equation (i1), governing the
acoustic fluid field were used to find the transient response of a cylindrical shell by Carrier
[2], Mindlin and Bleich [3] and by Haywood [4]. Similar expressions which approximate
the acoustic fluid field, valid for short times after load application, may be used to obtain
approximate solutions for the spheroidal shell response. These expressions, derived in
Appendix B, are the plane wave approximation (P.W.A))

o 1,

-
e T e ()

and the spheroidal wave approximation {Sp.W.A))

ob 1. 1
Sry = P .
oA&d/2] ¢ [&d2)] (56)

Plane wave approximation (P.W.A.)

From equation (18), using equations (15), (16) and the plane wave approximation,
equation (55), one obtains

p. = pel@® —nP)a® — D)W, (57)

which substituted into equation (2) uncouples the equations governing the shell and fluid
responses.
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The shell response may now be obtained from equations (1), (2), (10) and (19), with the
aid of equation (57). Assuming that f(n,t) is regular in # it follows that w(n, t) is regular
in # and that

uln, 1) = (1 — n*)"*8(n, 1), (28)
where S(n, t) is regular in 5. Let
W(ﬂ, t) = (l - ?12)_ 1Z(’7a t)a (30)

where Z(#, t) is regular in .

The problem of solving for the functions w(n, t), regular in 5 and u(y, t), with regular
singular points at = =+ 1, from the equations (1), (2), (10}, (19) and (57), has been trans-
formed into the problem of solving for the functions S(x, t) and Z(n, t), regular in #, from
the following equations, respectively :

SH@S/dnP) + o8+ fAZ/dm + fLZ + £s8 = 0, 37
g1(dS/dn)+g,S+g:Z +g.Z + 252 = g6, (58)
S(+1,1) =0, (29)
Z(+1,8) =0, (31
and

S(,0) = Z(n,0) = S(1,0) = Z(r,0) = 0, (41)

where
g8n) = —c{(a® —n»)/@® — Dgsn), (59)

and the functions fi—f5 and g,~g, of n were previously defined. Numerical integration is
now possible (see Section 4).

Spheroidal wave approximation (Sp.W.A.)

If equation (56} is used to represent the acoustic fluid field, then, from equations (18},
(15}, (16} and (56), one obtains:

po = pel(@® =)@ ~ )P} - pce(2/DD]; <. (60)

As may be seen from equations (2), (60), (56) and (16), the spheroidal wave approximation,
although considerably simplifying the problem of numerical integration, does not un-
couple the equations governing the shell and fluid responses. Using equations (28), (30),
(34) and (32), the problem of solving for the functions ®(&, #, t) and w(n, t), which are regular
in £ and #, and u(n, t), which has regular singular points at # = +1, in the infinite physical
domain & > a, 1 < n < +1, from the equations (1), (2), (10), (56), (16), (19), (20), (21) and
(24), is transformed into the problem of solving for the functions F(y, 4, t), Z(y., t) and S(z, 1),
which are regular in y and #, in the finite mathematical domain0 < y <1, -1 <5 < +1,
thus making numerical integration possible, from the equations (37), (38), (40)-(43), (29),
(31), (35), (36) and

J1(OF[0y) +joF +j3F = 0, (61)
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where
L) = =y, (62a)
) =, (62b)
and
Ja = (1/e)1/2). (62¢)

Since both plane and spheroidal wave approximations are valid for short times, the equa-
tions governing the shell and fluid responses may be uncoupled by using equations (55),
(15), (16), (19) and (21) to approximate the second term on the right side of equation (60),
which then becomes

pa = pel(@® —n)(a® = DI — pcX(2/D[(@* —n*)/(a® = D)]Fw. (63)

Thus, the problem of solving for the function w(y, ), regular in n, and u(y, t), with regular
singular points at # = + 1, from equations (1), (2), (10), (19) and (63), is transformed into
the problem of solving for the functions S(z, t) and Z(#, t), regular in #, from the following
equations

FU(d?S/dn?) + o8 + f1(dZ/dn) + fLZ + /8 = 0, (37)
g1(dS/dn) +g,S +85Z +g.Z +g8Z = g5, (64)
S(+1,1) = 0, (29)
Z(+1,1) =0, (31)
and
S(1,0) = Z(n,0) = S(n,0) = Z(n,0) = 0, (41)

where S(, t) and Z(n, t) are defined in equations (28) and (30),

g3(n) = ga(m)+ A2/ [(a* —n?)a* — 1)]*gs(n), (65)

and the functions f;~f5, g,—g¢ and g4 of # were previously defined. Numerical integration
may now be used.

6. EXACT SOLUTION FOR SPHERICAL SHELL

If equations (2), (10b), (11), (16), (19)H21) and (24) are written for spherical geometry,
the transient response of the spherical shell immersed in an acoustic fluid due to a uniform
radial pressure, Py, suddenly applied on the shell surface, and the corresponding fluid
pressure field are obtained, respectively, as

4(l—f-v)(cs)2 5 1+o

v \lel £ 8(1 2 121 2
I=viie] =iy Rop) o B+ c) 12040,
h p 6—v \c 1—v ¢

w(t) = WST|:1 —

s

y em(c/Ro)r] H, (66)
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and
_ _RoRopy i i
- £ R 41 2
R h =1 2¢3 1+—0£a, (1+v)fc
h p, 1—v \c
PR ) x eslet~(R=Ro/Ro - % for (R—R,) < ct, (67)
=0, for(R—R,) = ct

The shell response of equation (66) has been previously displayed by Klosner and Lou [10].
In these equations R, is the radius of the shell middle-surface, R is the radial distance
from the shell center, h is the shell thickness, wg is the static radial displacement (assumed
positive outward) under the uniform radial pressure P,

WST - h E 2 I (68)
and a; (i = 1,2, 3) are the roots of the algebraic equation :
R 4(1 2 41— 2
B PP A T Gl 1 R, Sl ) (69)
h p 1-v \c 1—v \c

Equations (66) or (67) may be used to check the numerical integration scheme discussed
in Section 4 fore = 0 and | = R,,.

7. NUMERICAL EXAMPLES

The calculations were performed using the following material constants and shell
geometry :

v = 0-30,
¢, = 1232 x 105 in./sec,

¢ = 0-590 x 10° in./sec,
ps = 07345 x 107 3 1b x sec?/in.4,
p = 09582 x 10~ *1b x sec?/in.%,
I =42in,

h =040in.,

which correspond to a thin steel shell in sea water.

The numerical procedure developed in Section 4 for the exact formulation was first
applied using a 10x 10 grid (N = 10) to a spherical shell (¢ = 0), to which a uniform
pressure P, is suddenly applied, and compared with the exact solution of equation (66).
The results of these calculations are illustrated in Fig. 5 for the radial shell response at
n = 0. The agreement between the exact solutions and those obtained by the numerical
technique outlined in Section 4 is seen to be good.
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FiG. 5. Comparison of radial response of spherical shell at # = 0 obtained from the exact solution
{ j and from numerical integration (@).

The equations were then integrated numerically for a spheroidal shell with ratio of
major to minor axis equal to 6 (e = 0-986), with a uniform pressure envelope P, suddenly
applied to the shell middle-susface, using N = 10 and the procedure outlined in Section 4.
Some of the results are plotted in Figs. 6-8. For the shell chosen the radial displacement
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FiG. 6. Radial displacement response of spheroidal shell,e = 0-986,at(a)n = 0,(b)y = 0-Sand(c)n = 0-9.

at 7 = 0 displayed in Fig. 6(a) shows little damping and slightly visible beating, while in
Fig. 6(b), displaying the radial displacement at n = 0-5, the beating phenomenon is pro-
nounced. The radial displacement at # = 0-9 is exhibited in Fig. 6(c). In Figs. 7(a}<(c) the
fluid pressure time history at three points at the shell surface (y = 1.0) are shown. The far
field pressure amplitude distribution exhibited in Fig. 8 shows almost no directivity.
Approximate solutions for the spheroidal shell response were obtained using the
coupled spheroidal, the uncoupled spheroidal and the plane wave approximation formula-
tions. The results are displayed in Figs. 9(a}{(c) and compared with the numerical solution
of the exact formulation. The numerical solution for the shell displacements using the
coupled spheroidal wave approximation formulation took approximately 0-5min for
N = 10 on an IBM-360/91 computer and for the early stages of the motion gives results in
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F1G. 7. Surface pressure response for spheroidal shell, ¢ = 0.986, at(a)n = 0,{b)y = 0-5and (c}y = 0.9.



Transient response of submerged spheroidal shelis 125

—

|
o /
=~
| E e
n°! \
Q 02x107%  04x107%  06x107% 0O8x107% 10x107%  12x107¢

Maxlpl/ Py

FiG. 8. Farfield (y = 0-20) pressure amplitude distribution for spheroidal shell, ¢ = 0-986.

w / WSTAT 1
-

K
s

20 . |
T4
15 &
o]
10 +

OS /

&

Y

-05
2
TIME (SEC x10%)

fe]



126 BEDROS BEDROSIAN and FRANK L. DIMAGGIO

I
|
o

05 f [
0
0 1 2 3
TIME {SEC x10%)
20

T

—~ 4+

e
o
—

|
i + N JINL I
)Y l + | UJ \ T + J
Vol Iy |
VIRUIBVIREN IR NI I
0s g AN/ S A o A ARy I
+\j RS }“1 T T ! |
Y Vo R \
vt o + +
o + b i1l !
3y \\-‘r +\_,l 1‘
Y \
!
-05
o] 1 2 3

TIME (SEC x10*)

FIG. 9. Comparison of radial response of spheroidal shell, ¢ = 0-986, at (a) 7 = 0, (b) # = 0:5 and (c)

5 = 09 obtained from numerical integration of the exact formulation ( ), of the coupled spheroidal

wave approximation (+), of the uncoupled spheroidal wave approximation ( x) and of the plane wave
approximation (Q).

very good agreement with the numerical solution of the exact formulation which took
approximately 1-7 min on the same computer.

The numerical solutions for the shell displacements obtained using the uncoupled
spheroidal wave approximation and the plane wave approximation for the same shell
took less computing time but did not provide good agreement with the numerical solution
of the exact formulation.
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APPENDIX A

[l = —(1=n?), (A1)
filn) = —(1=w)(1 =), (A2)
fin) = — @ f T ((alz__':z))[v(a2 ~n*)+(a®-1)], (A3)
S =~ _”"2)2 {1+ 9n* —[Bv+5) B3+ )l

+[2(1 + v)a* +(1 —v)a® = 2]}, (A4)
= (5] (15} —ms (A9)
8il0) = 3 i (S[_'j:))[v(az —n?)+ (@ - 1)], (A6)
o) = =, (A7)
s = | ol 2 | (A%
e = () |5 et (A9)
gslm) = —gl%(l—?)(az;l)%p(az—nz)*, (A10)
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P [1—w(a® - 1)t
gsln) = —m( 5 V)WT)Po(az-nz)*(l—nz)H(t);
1

hi(y.n) = = (1—n?)(a* —y*n?),

(‘\

~ 1

2
ha(y,n) = ( ) yHa*—yH)(1—n?),
2
) yi(1—n?P,

2 2
l) y’(1=n?),
2

QN

h3(y’ '7) = (
h4(y’ 77) = —2(

2 2 2
hs(y,n) = Z(d) yn(l—n7),

2 2
he(y, 1) = 2(2) V(1 +n2).

APPENDIX B

Derivation of spheroidal wave approximation (Sp.W.A.)

The fluid velocity potential function, ®(x, @, &, t), satisfies the wave equation :

1.,
qu) = —‘f(D
c
where the Laplacian in prolate spheroidal coordinates is

N 1 Ta P R Z Jn 62}
A I It R e e e
(d) éZ—nZ[an‘ Mantae Vet @ ni—n ae?

Using Laplace’s transform equation (B1) becomes:

(s

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(B1)

(B2)

(B3)

Solutions to equation (B3) may be obtained in the form of Lamé products (Ref. 6, p. 11):

sd
b, 0,&,5) = Z Conls) mn(_lzi’rl)Rm( “ 5 é) sm( ),

mun=0

(B4)

where S,,, and R,,, are, respectively, the angular and radial spheroidal wave functions.

For axisymmetric loading ® must be independent of ¢ and requires m = 0.
Then equation (B4) becomes

d d
0r.¢.9) Zcm(sso,,( f_z,n)ROn(—jz,c).

(BS)



Transient response of submerged spheroidal shells 129

Using asymptotic expansions for the radial functions R, (see for example Ref. 6, p. 67)
valid for short times after load application and/or for the far field which also satisfy the
condition for bounded &, one obtains from equation (B5):

o~ ls/anar2ng

® sfas):G(yS“'—'- B6
o ) e (B9)
From equation (B6) it follows that
od 1 sd]s
rr {—E-EE}D. (B7)
The inversion of equation (B7) yields the approximate spheroidal wave field equation :
o 1 1
b—— . (B8)

AXd2) T o [Ed/)]

If the first term on the right side of (B7) is neglected, i.e. when 1/¢ « (s/¢}(d/2), one obtains
the plane wave approximation :

_al = __l(i) B9)
R (

It should be noted that a similar procedure is possible for the nonaxisymmetric case.

(Received 25 February 1971)

AbcrpakT—MecienyeTcs HECTAUMOHAPHOE NOBEAEHUE YNPYTO, YAAMHEHHON, chepudeckoll obonouku,
MO BAUAHUEM DABHOMEPHOTO AABJICHUS, MPHIOKECHHOTO BHEIAMHO HA €€ [OBEPXHOCTH, & TAKKE fone
[NaBAEHUS B OKPECMHOCTHM AKYCTHUYeCkoM xuaxoctu., flyrem Haanexawmx npeobpasosanuft dyHxkuuu
NOBEACHUST W TEOMETPHYECKOH nepemeHHoM, 3agada CBOAMTCH K OAHOBPEMEHHOMY UHCIICHHOMY
MHTErpUPOBAHMIO, B KOHeuHoit obnacTtu, aeddepeHUnanbHbIX YPABHEHWH B HACTHBIX [MPOU3IBOLHBIX
no QYKHLHAM PeryispHbiX B MPOCMPaHCMBEXMMX fepeMeHHbIX. BhiBoauTcs npunbnuxeHHas 3aBHUCH-
MOCTB /1S MPENCTABIEHUA TONA XHMAKOCTH, 3TO none, BMecTe, ¢ NPUOTMXEHUEM NIOCKOH BOJIHBI,
MCTIOIB3YETCA A HMOAyYeHus NpubiinkeHHbiX pewieHnii noseaenns oGomovku. Llatotea ikcreHcHBHbIE
YHCACHHBIC PE3YALTATH AN CMAibHbIX 000104eK B MOPCKOH BOAS.



